

Spring 2022

INTRODUCTION TO COMPUTER VISION

Atlas Wang Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin https://vita-group.github.io/

Visual Degradation

Image Degradation Model

- f(x,y) image before degradation, 'true image'
- g(x,y) image after degradation, 'observed image'
- h(x,y) degradation filter
- $\hat{f}(x,y)$ estimate of f(x,y) computed from g(x,y)
- *n(x,y)* additive noise

 $g(x,y) = h(x,y) * f(x,y) + n(x,y) \Leftrightarrow G(u,v) = H(u,v) F(u,v) + N(u,v)$

Example: Image Blur

Blurring acts as a low pass filter and attenuates higher spatial frequencies

Goal of Image Enhancement Diversified

- From traditional signal processing (reconstruction) viewpoint
 - Full-reference metrics: PSNR, SSIM, etc.
- ... to human perception (subjective quality)-based
 - No-reference metrics (e.g., NIQE), and human study
- ... And to task-oriented, "end utility"-based
 - Typical examples: dehazing, deraining, (extreme) light, underwater ...
 - **Representative datasets: RESIDE** dehazing (TIP'18), **MPID** deraining (CVPR'19)
 - CVPR UG2+ Challenge: <u>http://www.ug2challenge.org</u>

Discussion: Patch-Based v.s. Image-Level

- The term "patch-based" may be vague because it can refer to any algorithm that works with small image patches.
 - BM3D image denoising, sparse coding for image super-resolution, image compression algorithms such as JPEG...
- Traditional image processing works on patches
 - Efficiency (esp. when model learning capacity is limited)
 - A lot of natural image statistics and similarities to exploit
- Deep learning image processing works on whole images
 - Mostly obtain better results as they are more "global-view"
 - But often ignore some useful prior knowledge on patch-level

Discussion: Self v.s. External Similarity

- Natural images contain abundant self-similarities.
 - For every patch in a natural image, we can probably find many similar patches in the same image.
 - Nonlocal patch-based methods exploit this self-similarity by finding/collecting similar patches and processing them jointly.
 - Cross-scale self-similarity (*Example Below*)

Learning to Enhance Images

- Data-driven training of "end-to-end" models (usually assuming "pairs")
- Prior/physical information can still be helpful

Image Denoising

• Simplest Low-Level Vision Problem

• Noisy Measurement:

$$y = x + e$$

Т

Image Denoising

- Simplest Low-Level Vision Problem
 - Estimate the clean image:

$$\widehat{\boldsymbol{x}} = f(\boldsymbol{y})$$

Image Denoising – Conventional Methods

- Collaborative Filtering
 - Non-local Mean, BM3D, etc

Classical Image Denoising: BM3D

- BM3D = *Block-Matching and 3D filtering*, suggested first in 2007.
- Given a 2D square-block, finds all 2D similar blocks and "group" them together as a 3D array, then performs a *collaborative filtering* (method that the authors designed) of the group to obtain a noise-free 2D estimation.
- Averaging overlapping pixels estimations.
- Gives state of the art results.

Based on: K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. *Image denoising by sparse 3-D transform-domain collaborative filtering*. IEEE Transactions on Image Processing, 16(8):2080–2095, 2007.

Patch-based + Self-Similarity + Domain Expertise

Image Denoising – Conventional Methods

- Collaborative Filtering
 - Non-local Mean, BM3D, etc
- Piece-wise Smooth
 - Total Variation, Tikhonov Regularization, etc

Image Denoising – Conventional Methods

- Collaborative Filtering
 - Non-local Mean, BM3D, etc
- Piece-wise Smooth
 - Total Variation, Tikhonov Regularization, etc
- Sparsity
 - Discrete Cosine Transform (DCT), Wavelets, etc
 - Dictionary Learning: KSVD, OMP, Lasso, etc
 - Analysis KSVD, Transform Learning, etc

Blurred Measurement:

$$y = M \otimes \boldsymbol{x}$$

 $\begin{array}{cccc} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{array}$ 0 \otimes Μ =

Estimate the stable image:

$$\widehat{\boldsymbol{x}} = f(\boldsymbol{y})$$

- Non-blind Image Deblurring
 - Suppose you know the blurring kernel, *M*.
 - $\widehat{x} = f(y, M)$
 - All training data need to have consistent *M*, as the testing data

- Non-blind Image Deblurring
 - Suppose you know the blurring kernel, *M*.
 - $\widehat{\boldsymbol{x}} = f(\boldsymbol{y}, \boldsymbol{M})$
 - All training data need to have consistent *M*, as the testing data
- Blind Image Deblurring More challenging yet practical problem
 - Estimate both the image, and the blurring kernel
 - $\{\widehat{\boldsymbol{x}}, M\} = f(y)$

Wiener Filtering

Norbert Wiener (1894-1964) "Father of cybernetics"

Restoration with a Wiener filter

G(u,v) = H(u,v) F(u,v) + N(u,v) $\hat{F}(u,v) = W(u,v) G(u,v)$

$$\widehat{F}(u,v) = W(u,v) G(u,v)$$

$$W(u,v) = \frac{H^*(u,v)}{|H(u,v)|^2 + K(u,v)}$$

where

 $egin{aligned} K(u,v) &= S_\eta(u,v)/S_f(u,v) \ S_f(u,v) &= |F(u,v)|^2 \ \mbox{power spectral density of } f(x,y) \ S_\eta(u,v) &= |N(u,v)|^2 \ \mbox{power spectral density of } \eta(x,y) \end{aligned}$

Limitation: Assuming known stationary signal and noise spectra, and additive noise

Example: Motion Deblurring by Wiener Filtering

blur = 20 pixels

$$W(u,v)=\frac{H^*(u,v)}{|H(u,v)|^2+K(u,v)}$$

- 1. Compute the FT of the blurred image
- 2. Multiply the FT by the Wiener filter
- 3. Compute the inverse FT

 $\hat{F}(u,v) = W(u,v) \ G(u,v)$

Maximum a posteriori (MAP) Estimation

- original f(x,y)
- motion blur
- additive intensity noise

• Estimate f(x,y) by optimizing a cost function:

For an image with \boldsymbol{n} pixels, write this process as

 $\widehat{\mathbf{g}} = \mathbf{A}\mathbf{f} + \mathbf{n}$

where $\hat{\mathbf{g}}$ and \mathbf{f} are *n*-vectors, and \mathbf{A} is an $n \times n$ matrix.

$$P(J) (-)$$

 $n(f) = (\nabla \mathbf{f})^2$

to suppress high frequency noise

Blind Deblurring?

• Estimate f(x,y) and h(x,y) by optimizing a cost function:

Blind Deblurring

blurred image

estimated blur filter

restored image

(a) Blurred photo

(b) Whyte *et al*. [40]

(f) Pan *et al*. [15]

(g) DeepDeblur [2]

DeblurGAN V2 (2019)

(h) SRN [3]

Image Super-Resolution

• Low-Resolution Measurement:

$$y = D * M \otimes \boldsymbol{x}$$

Image Super-Resolution

Estimate the stable image:

$$\widehat{\boldsymbol{x}} = f(\boldsymbol{y})$$

Image Super Resolution by Deep Learning (2013 – 2017)

Super-resolution results of "148026" (B100) with scale factor ×3 (from VDSR paper)

Many More Tasks in the Real World!

Underwater Enhancement

Dehazing

Super Resolution

Rain Removal

Denoising

Low Light Enhancement

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering